Galois Extensions of Lubin-tate Spectra
نویسنده
چکیده
Let En be the n-th Lubin-Tate spectrum at a prime p. There is a commutative S-algebra E n whose coefficients are built from the coefficients of En and contain all roots of unity whose order is not divisible by p. For odd primes p we show that E n does not have any non-trivial connected finite Galois extensions and is thus separably closed in the sense of Rognes. At the prime 2 we prove that there are no non-trivial connected Galois extensions of E n with Galois group a finite group G with cyclic quotient. Our results carry over to the K(n)-local context.
منابع مشابه
Galois Theory and Lubin-tate Cochains on Classifying Spaces
We consider brave new cochain extensions F (BG+, R) −→ F (EG+, R), where R is either a Lubin-Tate spectrum En or the related 2-periodic Morava K-theory Kn, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for En and Kn these extensions are always fai...
متن کاملGalois Representations and Lubin-Tate Groups
Using Lubin-Tate groups, we develop a variant of Fontaine’s theory of (φ,Γ)-modules, and we use it to give a description of the Galois stable lattices inside certain crystalline representations.
متن کاملRealisibility of Algebraic Galois Extensions by Strictly Commutative Ring Spectra
We describe some of the basic ideas of Galois theory for commutative S-algebras originally formulated by John Rognes. We restrict attention to the case of finite Galois groups. We describe the general framework developed by Rognes. Central rôles are played by the notion of strong duality and a trace or norm mapping constructed by Greenlees and May in the context of generalized Tate cohomology. ...
متن کامل5 Some additive galois cohomology rings
Let p ≥ 3 be a prime. We consider the cyclotomic extension Z (p) [ζ p 2 ] | Z (p) , with galois group G = (Z/p 2) *. Since this extension is wildly ramified, the Z (p) G-module Z (p) [ζ p 2 ] is not projective. We calculate its cohomology ring H * (G, Z (p) [ζ p 2 ]; Z (p)), carrying the cup product induced by the ring structure of Z (p) [ζ p 2 ]. Formulated in a somewhat greater generality, ou...
متن کامل1 7 Ju n 20 04 Some additive galois cohomology rings
Let p ≥ 3 be a prime. We consider the cyclotomic extension Z (p) [ζ p 2 ] | Z (p) , with galois group G = (Z/p 2) *. Since this extension is wildly ramified, the Z (p) G-module Z (p) [ζ p 2 ] is not projective. We calculate its cohomology ring H * (G, Z (p) [ζ p 2 ]; Z (p)), carrying the cup product induced by the ring structure of Z (p) [ζ p 2 ]. Proceeding in a somewhat greater generality, ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008